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Abstract

We consider the problem of finding a lightest derivation of a global structure using a
set of weighted rules. A large variety of inference problems in AI can be formulated within
this framework. We generalize A* search, and heuristics derived from abstractions, to a
broad class of lightest derivation problems. We also describe a new algorithm that searches
for lightest derivations using a hierarchy of abstractions to guide the computation. We
discuss how the algorithms described here can be used to address the pipeline problem —
the problem of passing information back and forth between various stages of processing
in a perceptual system. We consider examples in computer vision and natural language
processing. We apply the hierarchical search algorithm to the problem of estimating the
boundaries of convex objects in grayscale images and compare it to other search methods.
A second set of experiments demonstrate the use of a new compositional curve model for
finding salient curves in images.

1. Introduction

We consider a class of optimization problems defined by a set of weighted rules for composing
structures into larger structures. The goal in such problems is to find a lightest (least cost)
derivation of a global structure derivable by the given rules. A large variety of classical
inference problems in AI can be expressed within this framework. For example the global
structure might be a parse tree, a match of a deformable object model to an image, or an
assignment of values to variables in a Markov random field.

We define a lightest derivation problem in terms of a set of statements, a set of weighted
rules for deriving statements using other statements and a special goal statement. In each
case we are looking for the lightest derivation of the goal. We usually express a lightest
derivation problem using rule “schemas” that implicitly represent a very large set of rules in
terms of a small number of rules with variables. Lightest derivation problems are formally
equivalent to search in AND/OR graphs (Nilsson, 1980), but we find that our formulation is
more natural for the types of applications we are interested in. The relationship is discussed
in more detail in Section 2.3

One of the main goals of this research is the construction of algorithms for global opti-
mization across many levels of processing in a perceptual system. As described below our
algorithms can be used to integrate multiple stages of a processing pipeline into a single
global optimization problem that can be solved efficiently.
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Dynamic programming is a fundamental technique in the design of efficient inference
algorithms. Good examples are the Viterbi algorithm for hidden Markov models (Rabiner,
1989) and CKY parsing for stochastic context free grammars (Manning & Schutze, 1999).
The algorithms described in this paper can be used to significantly speed up the solution of
problems normally solved using dynamic programming. We demonstrate this for a specific
problem, where the goal is to estimate the boundaries of convex objects in grayscale images.
In a second set of experiments we show how our methods can be used to find salient curves
in images. We describe a new model for salient curves based on a compositional rule that
enforces long range shape constraints. This leads to a problem that is too large to be solved
with dynamic programming.

The algorithms we consider are all related to Dijkstra’s shortest paths algorithm (DSP)
(Dijkstra, 1959) and A* search (Hart, Nilsson, & Raphael, 1968). Both DSP and A* can be
used to find a shortest path in a cyclic graph. They use a priority queue to define an order
in which nodes are expanded and have a worst case running time of O(M log N) where N
is the number of nodes in the graph and M is the number of edges. In DSP and A* the
expansion of a node v involves generating all nodes u such that there is an edge from v to u.
The only difference between the two methods is that A* uses a heuristic function to avoid
expanding non-promising nodes.

Knuth gave a generalization of DSP that can be used to solve a lightest derivation
problem with cyclic rules (Knuth, 1977). We call this Knuth’s lightest derivation algorithm
(KLD). In analogy to Dijkstra’s algorithm, KLD uses a priority queue to define an order in
which statements are expanded. Here the expansion of a statement v involves generating
all conclusions that can be derived in a single step using v and other statements already
expanded. As long as each rule has a bounded number of antecedents KLD also has a worst
case running time of O(M log N) where N is the number of statements in the problem and
M is the number of rules. Nilsson’s AO* algorithm (Nilsson, 1980) can also be used to solve
lightest derivation problems. Although AO* can use a heuristic function, it is not a true
generalization of A* — it does not use a priority queue, only handles acyclic rules, and can
require O(MN) time even when applied to a shortest path problem.1 In particular, AO*
and its variants use a backward chaining technique that starts at the goal and repeatedly
refines subgoals, while A* is a forward chaining algorithm.2

Klein and Manning gave an A* parsing algorithm that is similar to KLD (Klein &
Manning, 2003) but can use a heuristic function. One of our contributions is a generalization
of this algorithm to arbitrary lightest derivation problems. We call this algorithm A* lightest
derivation (A*LD). The method is forward chaining, uses a priority queue to control the
order in which statements are expanded, handles cyclic rules and has a worst case running
time of O(M log N) for problems where each rule has a small number of antecedents. A*LD
can be seen as a true generalization of A* to lightest derivation problems. For a lightest
derivation problem that comes from a shortest path problem A*LD is identical to A*.

Of course the running times seen in practice are often not well predicted by worst case
analysis. This is specially true for problems that are very large and defined implicitly. For
example, we can use dynamic programming to solve a shortest path problem in an acyclic
graph in O(M) time. This is better than the O(M log N) bound for DSP, but for implicit

1. There are extensions that handle cyclic rules (Jimenez & Torras, 2000).
2. AO* is backward chaining in terms of the inference rules defining a lightest derivation problem.
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graphs DSP can be much more efficient since it expands nodes in a best-first order. When
searching for a shortest path from a source to a goal, DSP will only expand nodes v with
d(v) ≤ w∗. Here d(v) is the length of a shortest path from the source to v, and w∗ is the
length of a shortest path from the source to the goal. In the case of A* with a monotone and
admissible heuristic function, h(v), it is possible to obtain a similar bound when searching
implicit graphs. A* will only expand nodes v with d(v) + h(v) ≤ w∗.

The running time of KLD and A*LD can be expressed in a similar way. When solving
a lightest derivation problem, KLD will only expand statements v with d(v) ≤ w∗. Here
d(v) is the weight of a lightest derivation for v, and w∗ is the weight of a lightest derivation
of the goal statement. On the other hand, A*LD will only expand statements v with
d(v) + h(v) ≤ w∗. Here the heuristic function, h(v), gives an estimate of the additional
weight necessary for deriving the goal statement using a derivation of v. The heuristic
values used by A*LD are analogous to the distance from a node to the goal in a graph
search problem. This is exactly the notion used by A*. We note that these heuristic values
are significantly different from the ones used by AO*. In the case of AO* the heuristic
function, h(v), would estimate the weight of a lightest derivation for v.

An important difference between A*LD and AO* is that A*LD computes derivations
in a bottom-up fashion, while AO* uses a top-down approach. Each method has advan-
tages, depending on the type of problem being solved. For example, a classical problem in
computer vision involves grouping pixels into long and smooth curves. We can formulate
the problem in terms of finding smooth curves between pairs of pixels that are far apart.
For an image with n pixels there are Ω(n2) such pairs. A straight forward implementation
of a top-down algorithm would start by considering these Ω(n2) possibilities. A bottom-
up algorithm would start with O(n) pairs of nearby pixels. In this case we expect that a
bottom-up grouping method would be more efficient than a top-down method.

The classical AO* algorithm requires the set of rules to be acyclic. Jimenez and Torras
(2000) extended the method to handle cyclic rules. Another top-down algorithm that can
handle cyclic rules is described by Bonet and Geffner (1995). Hansen and Zilberstein (2001)
described a search algorithm for problems where the optimal solutions themselves can be
cyclic. The algorithms described in this paper can handle problems with cyclic rules but
require that the optimal solutions be acyclic. We also note that AO* can handle rules with
non-superior weight functions (as defined in Section 3) while KLD requires superior weight
functions. A*LD replaces this requirement by a requirement on the heuristic function.

A well known method for defining heuristics for A* is to consider an abstract or relaxed
search problem. For example, consider the problem of solving a Rubik’s cube in a small
number of moves. Suppose we ignore the edge and center pieces and solve only the corners.
This is an example of a problem abstraction. The number of moves necessary to put the
corners in a good configuration is a lower bound on the number of moves necessary to solve
the original problem. There are fewer corner configurations than there are full configurations
and that makes it easier to solve the abstract problem. In general, shortest paths to the
goal in an abstract problem can be used to define an admissible and monotone heuristic
function for solving the original problem with A*.

Here we show that abstractions can also be used to define heuristic functions for A*LD.
In a lightest derivation problem the notion of a shortest path to the goal is replaced by
the notion of a lightest context, where a context for a statement v is a derivation of the
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goal statement with a “hole” that can be filled in by a derivation of v. The computation of
lightest abstract contexts is itself a lightest derivation problem.

Abstractions are related to problem relaxations (Pearl, 1984). While general abstrac-
tions often lead to small problems that are solved through search, relaxations can lead to
problems that still have large a state space but may be simple enough to be solved in closed
form. The definition of abstractions that we use for lightest derivation problems includes
relaxations as a special case.

Another contribution of our work is a hierarchical search method that we call HA*LD.
This algorithm uses a hierarchy of abstractions where solutions at one level of abstraction
provide heuristic guidance for computing solutions at the level below. HA*LD searches
for lightest derivations and contexts at each level of abstraction simultaneously. More
specifically, each level of abstraction has its own set of statements and rules. The search
for lightest derivations and contexts at each level is controlled by a single priority queue.
To understand the running time of HA*LD, let w∗ be the weight of a lightest derivation
of the goal statement in the original (not abstracted) problem. For a statement v in the
abstraction hierarchy let d(v) be the weight of a lightest derivation for v at its level of
abstraction. Let h(v) be the weight of a lightest context for the abstraction of v (defined
at one level above v in the hierarchy). Now let K be the number of statements v in the
entire abstraction hierarchy with d(v)+h(v) ≤ w∗. HAL*D expands at most 2K statements
before finding a solution to the original problem. The factor of two comes from the fact
that the algorithm is computing both derivations and contexts at each level of abstraction.

Previous algorithms that use abstractions for solving search problems include meth-
ods based on pattern databases (Culberson & Schaeffer, 1998; Korf, 1997; Korf & Felner,
2002), Hierarchical A* (HA*, HIDA*) (Holte, Perez, Zimmer, & MacDonald, 1996; Holte,
Grajkowski, & Tanner, 2005) and coarse-to-fine dynamic programming (CFDP) (Raphael,
2001). Pattern databases have made it possible to compute optimal solutions to impres-
sively large search problems. These methods construct a lookup table of shortest paths from
a node to the goal at all abstract states. In practice the approach is limited to tables that
remain fixed over different problem instances, or relatively small tables if the heuristic must
be recomputed for each instance. For example, for the Rubik’s cube we can precompute
the number of moves necessary to solve every corner configuration. This table can be used
to define a heuristic function when solving any full configuration of the Rubik’s cube. Both
HA* and HIDA* use a hierarchy of abstractions and can avoid searching over all nodes at
any level of the hierarchy. On the other hand, in directed graphs these methods may still
expand abstract nodes with arbitrarily large heuristic values. It is also not clear how to
generalize HA* and HIDA* to lightest derivation problems that have rules with more than
one antecedent. Finally CFDP is related to AO* in that it repeatedly solves ever more
refined problems using dynamic programming. This leads to a worst case running time of
O(NM). We will discuss the relationships between HA*LD and these other hierarchical
methods in more detail in Section 8.

We note that both A* search and related algorithms have been previously used to solve
a number of problems that are not classical state space search problems. This includes the
traveling salesman problem (Zhang & Korf, 1996), planning (Edelkamp, 2002), multiple
sequence alignment (Korf, Zhang, Thayer, & Hohwald, 2005), combinatorial problems on
graphs (Felner, 2005) and parsing using context-free-grammars (Klein & Manning, 2003).
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The work in (Bulitko, Sturtevant, Lu, & Yau, 2006) uses a hierarchy of state-space abstrac-
tions to do real-time search.

1.1 The pipeline problem

A major problem in artificial intelligence is the integration of multiple processing stages to
form a complete perceptual system. We call this the pipeline problem. In general we have
a concatenation of systems where each stage feeds information to the next. In vision, for
example, we might have an edge detector feeding information to a boundary finding system,
which in turn feeds information to an object recognition system.

Because of computational constraints and the need to build modules with clean interfaces
pipelines often make hard decisions at module boundaries. For example, an edge detector
typically constructs a Boolean array that indicates weather or not an edge was detected
at each image location. But there is general recognition that the presence of an edge at a
certain location can depend on the context around it. People often see edges at places where
the image gradient is small if, at higher cognitive level, it is clear that there is actually an
object boundary at that location. Speech recognition systems try to address this problem
by returning n-best lists, but these may or may not contain the actual utterance. We would
like the speech recognition system to be able to take high-level information into account
and avoid the hard decision of exactly what strings to output in its n-best list.

A processing pipeline can be specified by describing each of its stages in terms of rules for
constructing structures using structures produced from a previous stage. In a vision system
one stage could have rules for grouping edges into smooth curves while the next stage could
have rules for grouping smooth curves into objects. In this case we can construct a single
lightest derivation problem representing the entire system. Moreover, a hierarchical set of
abstractions can be applied to the entire pipeline. By using HA*LD to compute lightest
derivations a complete scene interpretation derived at one level of abstraction guides all
processing stages at a more concrete level. This provides a mechanism that enables coarse
high-level processing to guide low-level computation. We believe that this is an important
property for implementing efficient perceptual pipelines that avoid making hard decisions
between processing stages.

We note that the formulation of a complete computer vision system as a lightest deriva-
tion problem is related to the work in (Geman, Potter, & Chi, 2002), (Tu, Chen, Yuille, &
Zhu, 2005) and (Jin & Geman, 2006). In these papers image understanding is posed as a
parsing problem, where the goal is to explain the image in terms of a set of objects that
are formed by the (possibly recursive) composition of generic parts. The work in (Tu et al.,
2005) uses data driven MCMC to compute “optimal” parses while the work in (Geman
et al., 2002) and (Jin & Geman, 2006) use a bottom-up algorithm for building composi-
tions in a greedy fashion. Neither of these methods are guaranteed to compute an optimal
scene interpretation. We hope that HA*LD will provide a more principled computational
technique for solving large parsing problems defined by compositional models.

1.2 Overview

We begin by formally defining a lightest derivation problem in Section 2. That section also
discusses dynamic programming and the relationship between lightest derivation problems
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and AND/OR graphs. In Section 3 we describe Knuth’s lightest derivation algorithm. In
Section 4 we describe A*LD and prove its correctness. Section 5 shows how abstractions
can be used to define mechanically constructed heuristic functions for A*LD. We describe
HA*LD in Section 6 and discuss its use in solving the pipeline problem in Section 7. Sec-
tion 8 discusses the relationship between HA*LD and other hierarchical search methods.
Finally in Sections 9 and 10 we present some experimental results. We conclude in Sec-
tion 11.

2. Lightest Derivation Problems

Let Σ be a set of statements and R be a set of inference rules of the following form,

A1 = w1
...

An = wn

C = g(w1, . . . , wn)

Here the antecedents Ai and the conclusion C are statements in Σ, the weights wi are
non-negative real valued variables and g is a non-negative real valued weight function. For
a rule with no antecedents the function g is simply a non-negative real value. Throughout
the paper we also use A1, . . . , An →g C to denote an inference rule of this type.

A derivation of C is a finite tree rooted at a rule A1, . . . , An →g C with n children, where
the i-th child is a derivation of Ai. The leaves of this tree are rules with no antecedents.
Every derivation has a weight that is the value obtained by recursive application of the
functions g along the derivation tree. Figure 1 illustrates a derivation tree.

Intuitively a rule A1, . . . , An →g C says that if we can derive the antecedents Ai with
weights wi then we can derive the conclusion C with weight g(w1, . . . , wn). The problem
we are interested in is to compute a lightest derivation of a special goal statement.

All of the algorithms discussed in this paper assume that the weight functions g as-
sociated with a lightest derivation problem are non-decreasing in each variable. This is a
fundamental property ensuring that lightest derivations have an optimal substructure prop-
erty. In this case lightest derivations can be constructed from other lightest derivations.

To facilitate the runtime analysis of algorithms we assume that every rule has a small
number of antecedents. We use N to denote the number of statements in a lightest derivation
problem, while M denotes the number of rules. For most of the problems we are interested
in N and M are very large but the problem can be implicitly defined in a compact way,
by using a small number of rules with variables as in the examples below. We also assume
that N ≤ M since statements that are not in the conclusion of some rule are clearly not
derivable and can be ignored.

2.1 Dynamic Programming

We say that a set of rules is acyclic if there is an ordering O of the statements in Σ such
that for any rule with conclusion C the antecedents are statements that come before C in
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A 1A 2A 3C
D e r i v a t i o no f A 1 D e r i v a t i o no f A 2 D e r i v a t i o no f A 3

Figure 1: A derivation of C is a tree of rules rooted at a rule r with conclusion C. The
children of the root are derivations of the antecedents in r. The leafs of the tree
are rules with no antecedents.

the ordering. Dynamic programming can be used to solve a lightest derivation problem if
the functions g in each rule are non-decreasing and the set of rules is acyclic. In this case
lightest derivations can be computed sequentially in terms of an acyclic ordering O. At the
i-th step a lightest derivation of the i-th statement is obtained by minimizing over all rules
that can be used to derive that statement. This method takes O(M) time to compute a
lightest derivation for each statement in Σ.

We note that for cyclic rules it is sometimes possible to compute lightest derivations by
taking multiple passes over the statements. We also note that some authors would refer to
Dijkstra’s algorithm (and KLD) as a dynamic programming method. In this paper we only
use the term when referring to algorithms that compute lightest derivations in a fixed order
that is independent of the solutions computed along the way.

2.2 Examples

Rules for computing shortest paths from a single source in a weighted graph are shown
in Figure 2. We assume that we are given a weighted graph G = (V, E), where wxy is a
non-negative weight for each edge (x, y) ∈ E and s is a distinguished start node. The first
rule states that there is a path of weight zero to the start node s. The second set of rules
state that if there is a path to a node x we can extend that path with an edge from x to
y to obtain an appropriately weighted path to a node y. There is a rule of this type for
each edge in the graph. A lightest derivation of path(x) corresponds to shortest path from
s to x. Note that for general graphs these rules can be cyclic. Figure 3 illustrates a graph
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(1)

path(s) = 0

(2) for each (x, y) ∈ E,

path(x) = w

path(y) = w + wxy

Figure 2: Rules for computing shortest paths in a graph.

a b cd es p a t h ( s ) = wp a t h ( d ) = w + w s d
p a t h ( d ) = wp a t h ( b ) = w + w d b
p a t h ( s ) = 0 p a t h ( s ) = wp a t h ( e ) = w + w s e

p a t h ( e ) = wp a t h ( c ) = w + w e c
p a t h ( s ) = 0

p a t h ( c ) = wp a t h ( b ) = w + w c b

Figure 3: A graph with two highlighted paths from s to b and the corresponding derivations
using rules from Figure 2.

and two different derivations of path(b) using the rules just described. These corresponds
to two different paths from s to b.

Rules for chart parsing are shown in Figure 4. We assume that we are given a weighted
context free grammar in Chomsky normal form (Manning & Schutze, 1999), i.e., a weighted
set of productions of the form X → s and X → Y Z where X, Y and Z are nonterminal
symbols and s is a terminal symbol. The input string is given by a sequence of terminals
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(1) for each production X → si,

phrase(X, i, i + 1) = w(X → si)

(2) for each production X → Y Z and 1 ≤ i < j < k ≤ n + 1,

phrase(Y, i, j) = w1

phrase(Z, j, k) = w2

phrase(X, i, k) = w1 + w2 + w(X → Y Z)

Figure 4: Rules for parsing with a context free grammar.

(s1, . . . , sn). The first set of rules state that if the grammar contains a production X → si

then there is a phrase of type X generating the i-th entry of the input with weight w(X →
si). The second set of rules state that if the grammar contains a production X → Y Z and
there is a phrase of type Y from i to j and a phrase of type Z from j to k then there is
an, appropriately weighted, phrase of type X from i to k. Let S be the start symbol of the
grammar. The goal of parsing is to find a lightest derivation of phrase(S, 1, n + 1). These
rules are acyclic because when phrases are composed together they form longer phrases.

2.3 AND/OR Graphs

Lightest derivation problems are closely related to AND/OR graphs. Let Σ and R be a set
of statements and rules defining a lightest derivation problem. To convert the problem to
an AND/OR graph representation we can build a graph with a disjunction node for each
statement in Σ and a conjunction node for each rule in R. There is an edge from each state-
ment to each rule deriving that statement, and an edge from each rule to its antecedents.
The leaves of the AND/OR graph are rules with no antecedents. Now derivations of a
statement using rules in R can be represented by solutions rooted at that statement in the
corresponding AND/OR graph. Conversely, it is also possible to represent any AND/OR
graph search problem as a lightest derivation problem. In this case we can view each node
in the graph as a statement in Σ and build an appropriate set of rules R.

3. Knuth’s Lightest Derivation

In (Knuth, 1977) Knuth described a generalization of Dijkstra’s shortest paths algorithm
that we call Knuth’s lightest derivation (KLD). Knuth’s algorithm can be used to solve a
large class of lightest derivation problems. The algorithm allows the rules to be cyclic but
requires that the weight functions associated with each rule be non-decreasing and superior.
Specifically we require the following two properties on the weight function g in each rule,

non-decreasing: if w′
i ≥ wi then g(w1, . . . , w

′
i, . . . , wn) ≥ g(w1, . . . , wi, . . . , wn)

superior: g(w1, . . . , wn) ≥ wi
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For example,
g(x1, . . . , xn) = x1 + · · ·+ xn

g(x1, . . . , xn) = max(x1, . . . , xn)

are both non-decreasing and superior functions.
Knuth’s algorithm computes lightest derivations in non-decreasing weight order. Since

we are only interested in a lightest derivation of a special goal statement we can often stop
the algorithm before computing the lightest derivation of many statements.

A weight assignment is an expression of the form (B = w) where B is a statement in Σ
and w is a non-negative real value. We say that the weight assignment (B = w) is derivable
if there is a derivation of B with weight w. For any set of rules R, statement B, and weight
w we write R ⊢ (B = w) if the rules in R can be used to derive (B = w). Let ℓ(B, R) be
the infimum of the set of weights derivable for B,

ℓ(B, R) = inf{w : R ⊢ (B = w)}.

Given a set of rules R and a statement goal ∈ Σ we are interested in computing a derivation
of goal with weight ℓ(goal , R).

We define a bottom-up logic programming language in which we can easily express the
algorithms we wish to discuss throughout the rest of the paper. Each algorithm is defined
by a set of rules with priorities. We encode the priority of a rule by writing it along the
line separating the antecedents and the conclusion as follows,

A1 = w1
...

An = wn

p(w1, . . . , wn)
C = g(w1, . . . , wn)

We call a rule of this form a prioritized rule. The execution of a set of prioritized rules
P is defined by the procedure in Figure 5. The procedure keeps track of a set S and a
priority queue Q of weight assignments of the form (B = w). Initially S is empty and Q
contains weight assignments defined by rules with no antecedents at the priorities given by
those rules. We iteratively remove the lowest priority assignment (B = w) from Q. If B
already has an assigned weight in S then the new assignment is ignored. Otherwise we add
the new assignment to S and “expand it” — every assignment derivable from (B = w) and
other assignments already in S using some rule in P is added to Q at the priority specified
by the rule. The procedure stops when the queue is empty.

The result of executing a set of prioritized rules is a set of weight assignments. Moreover,
the procedure can implicitly keep track of derivations by remembering which assignments
were used to derive an item that is inserted in the queue.

Lemma 1. The execution of a finite set of prioritized rules P derives every statement that
is derivable with rules in P .

Proof. Each rule causes at most one item to be inserted in the queue. Thus eventually Q
is empty and the algorithm terminates. When Q is empty every statement derivable by a
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Procedure Run(P )
1. S ← ∅
2. Initialize Q with assignments defined by rules with no antecedents at their priorities
3. while Q is not empty
4. Remove the lowest priority element (B = w) from Q
5. if B has no assigned weight in S
6. S ← S ∪ {(B = w)}
7. Insert assignments derivable from (B = w) and other assignments in S using

some rule in P into Q at the priority specified by the rule
8. return S

Figure 5: Running a set of prioritized rules.

single rule using antecedents with weight in S already has a weight in S. This implies that
every derivable statement has a weight in S.

Now we are ready to define Knuth’s lightest derivation algorithm. The algorithm is
easily described in terms of prioritized rules.

Definition 1 (Knuth’s lightest derivation). Let R be a finite set of non-decreasing and
superior rules. Define a set of prioritized rules K(R) by setting the priority of each rule in
R to be the weight of the conclusion. KLD is given by the execution of K(R).

We can show that while running K(R), if (B = w) is added to S then w = ℓ(B, R).
This means that all assignments in S represent lightest derivations. We can also show that
assignments are inserted into S in non-decreasing weight order. If we stop the algorithm as
soon as we insert a weight assignment for goal into S we will expand all statements B such
that ℓ(B, R) < ℓ(goal , R) and some statements B such that ℓ(B, R) = ℓ(goal , R). These
properties follow from a more general result described in the next section.

3.1 Implementation

The algorithm in Figure 5 can be implemented to run in O(M log N) time, where N and
M refer to the size of the problem defined by the prioritized rules P .

In practice the set of prioritized rules P is often specified implicitly, in terms of a small
number of rules with variables. In this case the problem of executing P is closely related to
the work on logical algorithms described by McAllester (2002).

The main difficulty in devising an efficient implementation of the procedure in Figure 5
is in step 7. In that step we need to find weight assignments in S that can be combined
with (B = w) to derive new weight assignments. The logical algorithms work shows how a
set of inference rules with variables can be transformed into a new set of rules, such that
every rule has at most two antecedents and is in a particularly simple form. Moreover,
this transformation does not increase the number of rules too much. Once the rules are
transformed their execution can be implemented efficiently using a hashtable to represent
S, a heap to represent Q and indexing tables that allow us to perform step 7 quickly.
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Consider the second set of rules for parsing in Figure 4. These can be represented by
a single rule with variables. Moreover the rule has two antecedents. When executing the
parsing rules we keep track of a table mapping a value for j to statements phrase(Y, i, j)
that have a weight in S. Using this table we can quickly find statements that have a weight
in S and can be combined with a statement of the form phrase(Z, j, k). Similarly we keep
track of a table mapping a value for j to statements phrase(Z, j, k) that have a weight in
S. The second table lets us quickly find statements that can be combined with a statement
of the form phrase(Y, i, j). We refer the reader to (McAllester, 2002) for more details.

4. A* Lightest Derivation

Our A* lightest derivation algorithm (A*LD) is a generalization of A* search to lightest
derivation problems that subsumes A* parsing. The algorithm is similar to KLD but it can
use a heuristic function to speed up computation. Consider a lightest derivation problem
with rules R and goal statement goal . Knuth’s algorithm will expand any statement B
such that ℓ(B, R) < ℓ(goal , R). By using a heuristic function A*LD can avoid expanding
statements that have light derivations but are not part of a light derivation of goal .

Let R be a set of rules with statements in Σ, and h be a heuristic function assigning
a weight to each statement. Here h(B) is an estimate of the additional weight required to
derive goal using a derivation of B. We note that in the case of a shortest path problem this
weight is exactly the distance from a node to the goal. The value ℓ(B, R) + h(B) provides
a figure of merit for each statement B. The A* lightest derivation algorithm expands
statements in order of their figure of merit.

We say that a heuristic function is monotone if for every rule A1, . . . , An →g C in R
and derivable weight assignments (Ai = wi) we have,

wi + h(Ai) ≤ g(w1, . . . , wn) + h(C). (1)

This definition agrees with the standard notion of a monotone heuristic function for rules
that come from a shortest path problem. We can show that if h is monotone and h(goal) = 0
then h is admissible under an appropriate notion of admissibility. For the correctness of
A*LD, however, it is only required that h be monotone and that h(goal) be finite. In this
case monotonicity implies that the heuristic value of every statement C that appears in a
derivation of goal is finite. Below we assume that h(C) is finite for every statement. If h(C)
is not finite we can ignore C and every rule that derives C.

Definition 2 (A* lightest derivation). Let R be a finite set of non-decreasing rules and h
be a monotone heuristic function for R. Define a set of prioritized rules A(R) by setting
the priority of each rule in R to be the weight of the conclusion plus the heuristic value,
g(w1, . . . , wn) + h(C). A*LD is given by the execution of A(R).

Now we show that the execution of A(R) correctly computes lightest derivations and
that it expands statements in order of their figure of merit values.

Theorem 2. During the execution of A(R), if (B = w) ∈ S then w = ℓ(B, R).

Proof. The proof is by induction on the size of S. The statement is trivial when S = ∅.
Suppose the statement was true right before the algorithm removed (B = wb) from Q and
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added it to S. The fact that (B = wb) ∈ Q implies that the weight assignment is derivable
and thus wb ≥ ℓ(B, R).

Suppose T is a derivation of B with weight w′
b < wb. Consider the moment right before

the algorithm removed (B = wb) from Q and added it to S. Let A1, . . . , An →g C be a
rule in T such that the antecedents Ai have a weight in S while the conclusion C does not.
Let wc = g(ℓ(A1, R), . . . , ℓ(An, R)). By the induction hypothesis the weight of Ai in S is
ℓ(Ai, R). Thus (C = wc) ∈ Q at priority wc + h(C). Let w′

c be the weight that T assigns to
C. Since g is non-decreasing we know wc ≤ w′

c. Since h is monotone w′
c+h(C) ≤ w′

b+h(B).
This follows by using the monotonicity condition along the path from C to B in T . Now
note that wc + h(C) < wb + h(B) which in turn implies that (B = wb) is not the weight
assignment in Q with minimum priority.

Theorem 3. During the execution of A(R) statements are expanded in order of the figure
of merit value ℓ(B, R) + h(B).

Proof. First we show that the minimum priority of Q does not decrease throughout the
execution of the algorithm. Suppose (B = w) is an element in Q with minimum priority.
Removing (B = w) from Q does not decrease the minimum priority. Now suppose we add
(B = w) to S and insert assignments derivable from (B = w) into Q. Since h is monotone
the priority of every assignment derivable from (B = w) is at least the priority of (B = w).

A weight assignment (B = w) is expanded when it is removed from Q and added to S.
By the last theorem w = ℓ(B, R) and by the definition of A(R) this weight assignment was
queued at priority ℓ(B, R) + h(B). Since we removed (B = w) from Q this must be the
minimum priority in the queue. The minimum priority does not decrease over time so we
must expand statements in order of their figure of merit value.

If we have accurate heuristic functions A*LD can be much more efficient than KLD. To
understand the advantage consider a situation where we have a perfect heuristic function.
That is, suppose h(B) is exactly the additional weight required to derive goal using a
derivation of B. Then the figure of merit ℓ(B, R) + h(B) equals the weight of a lightest
derivation of goal that uses B. In this case A*LD will derive goal before expanding any
statements that are not part of a lightest derivation of goal .

The correctness KLD follows from the correctness of A*LD. For a set of non-decreasing
and superior rules we can consider the trivial heuristic function h(B) = 0. The fact that
the rules are superior imply that this heuristic is monotone. The theorems above imply
that Knuth’s algorithm correctly computes lightest derivations and expands statements in
order of their lightest derivable weights.

5. Heuristics Derived from Abstractions

Here we consider the case of additive rules — rules where the weight of the conclusion is
the sum of the weights of the antecedents plus a non-negative value v called the weight of
the rule. We denote such a rule by A1, . . . , An →v C. The weight of a derivation using
additive rules is the sum of the weights of the rules that appear in the derivation tree.

A context for a statement B is a finite tree of rules such that if we add a derivation of
B to the tree we get a derivation of goal . Intuitively a context for B is a derivation of goal
with a “hole” that can be filled in by a derivation of B as shown in Figure 6.
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A 1A 2A 3C
D e r i v a t i o no f A 1 D e r i v a t i o no f A 2

. . .. . .g o a l

D e r i v a t i o no f A 3
c o n t e x t f o r Cc o n t e x t f o r A 3

Figure 6: A derivation of goal defines contexts for the statements that appear in the deriva-
tion tree. Note how a context for C together with a rule A1, A2, A3 → C and
derivations of A1 and A2 define a context for A3.

For additive rules, each context has a weight that is the sum of weights of the rules in it.
Let R be a set of additive rules with statements in Σ. For B ∈ Σ we define ℓ(context(B), R)
to be the weight of a lightest context for B. The value ℓ(B, R) + ℓ(context(B), R) is the
weight of a lightest derivation of goal that uses B.

Contexts can be derived using rules in R together with context rules c(R) defined as
follows. First, goal has an empty context with weight zero. This is captured by a rule with
no antecedents →0 context(goal). For each rule A1, . . . , An →v C in R we put n rules in
c(R). These rules capture the notion that a context for C and derivations of Aj for j 6= i
define a context for Ai,

context(C), A1, . . . , Ai−1, Ai+1, . . . , An →v context(Ai).

Figure 6 illustrates how a context for C together with derivations of A1 and A2 and a rule
A1, A2, A3 → C define a context for A3.
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We say that a heuristic function h is admissible if h(B) ≤ ℓ(context(B), R). Admissible
heuristic functions never over-estimate the weight of deriving goal using a derivation of
particular statement. The heuristic function is perfect if h(B) = ℓ(context(B), R). Now we
show how to obtain admissible and monotone heuristic functions from abstractions.

5.1 Abstractions

Let (Σ, R) be a lightest derivation problem with statements Σ and rules R. An abstraction
of (Σ, R) is given by an abstract problem (Σ′, R′) and a map abs :Σ→Σ′. We require that
for every rule A1, . . . , An →v C in R there is a rule abs(A1), . . . , abs(An)→v′ abs(C) in R′

such that v′ ≤ v. Below we show how an abstract problem can be used to define a monotone
and admissible heuristic function for the original problem.

We usually think of abs as defining a coarsening of Σ by mapping several statements
into the same abstract statement. For example, for a parser abs might map a lexicalized
nonterminal NPhouse to the nonlexicalized nonterminal NP . In this case the abstraction
defines a smaller problem on the abstract statements. Abstractions can often be defined in
a mechanical way by starting with a map abs from Σ into some set of abstract statements
Σ′. We can then “project” the rules in R from Σ into Σ′ using abs to get a set of abstract
rules. Typically several rules in R will map to the same abstract rule. We only need to
keep one copy of each abstract rule, with a weight that is a lower bound on the weight of
the concrete rules mapping into it.

Every derivation in (Σ, R) maps to an abstract derivation so we have ℓ(abs(C), R′) ≤
ℓ(C, R). If we let the goal of the abstract problem be abs(goal) then every context in (Σ, R)
maps to an abstract context and we see that ℓ(context(abs(C)), R′) ≤ ℓ(context(C), R).
This means that lightest abstract context weights form an admissible heuristic function,

h(C) = ℓ(context(abs(C)), R′).

Now we show that this heuristic function is also monotone.
Consider a rule A1, . . . , An →v C in R and let (Ai = wi) be weight assignments derivable

using R. In this case there is a rule abs(A1), . . . , abs(An) →v′ abs(C) in R′ where v′ ≤ v
and (abs(Ai) = w′

i) is derivable using R′ where w′
i ≤ wi. By definition of contexts (in the

abstract problem) we have,

ℓ(context(abs(Ai)), R
′) ≤ v′ +

∑

j 6=i

w′
j + ℓ(context(abs(C)), R′).

Since v′ ≤ v and w′
j ≤ wj we have,

ℓ(context(abs(Ai)), R
′) ≤ v +

∑

j 6=i

wj + ℓ(context(abs(C)), R′).

Plugging in the heuristic function h from above and adding wi to both sides,

wi + h(Ai) ≤ v +
∑

j

wj + h(C),

which is exactly the monotonicity condition in equation (1) for an additive rule.
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If the abstract problem defined by (Σ′, R′) is relatively small we can precompute lightest
context weights for statements in Σ′ using dynamic programming or KLD. We can store
these weights in a database to serve as a heuristic function for solving the concrete problem
using A*LD. This is exactly the pattern database approach that has been previously used
for solving large search problems (Culberson & Schaeffer, 1998; Korf, 1997). Our results
show that pattern databases constructed from abstractions can be used in the more general
setting of lightest derivations problems. The experiments in Section 10 demonstrate the
technique in a specific application.

6. Hierarchical A* Lightest Derivation

When using an abstraction to define a heuristic function both the computation of abstract
derivations and the computation of abstract contexts are also lightest derivation problems.
Intuitively we can solve these problems recursively with a heuristic function derived from a
further abstraction. This leads to the notion of a hierarchy of abstractions.

Here we define a hierarchical algorithm that we call HA*LD. This algorithm searches
for derivations and contexts at each level of abstraction in an abstraction hierarchy simul-
taneously. The algorithm uses a single priority queue to control the computation. At each
level of abstraction the behavior HA*LD is similar to the behavior of A*LD when using
an abstraction-derived heuristic function. The hierarchical algorithm queues derivations of
a statement C at a priority that depends on a lightest abstract context for C. But now
contexts are not computed in advance. Instead, contexts are computed at the same time
we are computing derivations. Until we have an abstract context for C, derivations of C
are “stalled”. This is captured by the addition of context(abs(C)) as an antecedent to each
rule that derives C.

We define an abstraction hierarchy with m levels to be a sequence of lightest deriva-
tion problems with additive rules (Σk, Rk) for 0 ≤ k ≤ m − 1 with a single abstraction
function abs. For 0 ≤ k < m − 1 the abstraction function maps Σk onto Σk+1. We re-
quire that (Σk+1, Rk+1) be an abstraction of (Σk, Rk) as defined in the previous section:
if A1, . . . , An →v C is in Rk then there exists a rule abs(A1), . . . , abs(An) →v′ abs(C) in
Rk+1 with v′ ≤ v. The hierarchical algorithm computes lightest derivations of statements
in Σk using contexts from Σk+1 to define heuristic values. We extend abs so that it maps
Σm−1 to a most abstract set of statements Σm containing a single element ⊥. Since abs is
onto we have |Σk| ≥ |Σk+1|. That is, the number of statements decrease as we go up the
abstraction hierarchy. We denote by absk the abstraction function from Σ0 to Σk obtained
by composing abs with itself k times.

We are interested in computing a lightest derivation of a goal statement goal ∈ Σ0. Let
goalk = absk(goal) be the goal at each level of abstraction. The hierarchical algorithm is
defined by the set of prioritized rules H in Figure 7. Rules labeled UP compute derivations
of statements at one level of abstraction using context weights from the level above to define
priorities. Rules labeled BASE and DOWN compute contexts in one level of abstraction
using derivation weights at the same level to define priorities. The rules labeled START1
and START2 start the inference by handling the most abstract level.

The execution of H starts by computing a derivation and context for ⊥ with START1
and START2. It continues by deriving statements in Σm−1 using UP rules. Once the
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START1: 0
⊥ = 0

START2: 0
context(⊥) = 0

BASE: goalk = w
w

context(goalk) = 0

UP: context(abs(C)) = wc

A1 = w1
...

An = wn

v + w1 + · · ·+ wn + wc

C = v + w1 + · · ·+ wn

DOWN: context(C) = wc

A1 = w1
...

An = wn

v + wc + w1 + · · ·+ wn

context(Ai) = v + wc + w1 + · · ·+ wn − wi

Figure 7: Prioritized rules H defining HA*LD. BASE rules are defined for 0 ≤ k ≤ m− 1.
UP and DOWN rules are defined for each rule A1, . . . , An →v C ∈ Rk with
0 ≤ k ≤ m− 1.

lightest derivation of goalm−1 is found the algorithm derives a context for goalm−1 with a
BASE rule and starts computing contexts for other statements in Σm−1 using DOWN rules.
In general HA*LD interleaves the computation of derivations and contexts at each level of
abstraction since the execution of H uses a single priority queue.

Note that no computation happens at a given level of abstraction until a lightest deriva-
tion of the goal has been found at the level above. This means that the structure of the
abstraction hierarchy can be defined dynamically. We could define the set of statements at
one level of abstraction by refining the statements that appear in a lightest derivation of
the goal at the level above. Here we assume a static abstraction hierarchy.

For each statement C ∈ Σk with 0 ≤ k ≤ m − 1 we use ℓ(C) to denote the weight of
a lightest derivation for C using Rk while ℓ(context(C)) denotes the weight of a lightest
context for C using Rk. For the most abstract level we define ℓ(⊥) = ℓ(context(⊥)) = 0.
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Below we show that HA*LD correctly computes lightest derivations and lightest contexts
at every level of abstraction. Moreover, the order in which derivations and contexts are
expanded is controlled by a heuristic function defined as follows. For C ∈ Σk with 0 ≤ k ≤
m− 1 define a heuristic value for C using contexts at the level above and a heuristic value
for context(C) using derivations at the same level,

h(C) = ℓ(context(abs(C))),
h(context(C)) = ℓ(C).

For the most abstract level we define h(⊥) = h(context(⊥)) = 0. Let Φ be either an element
of Σk for 0 ≤ k ≤ m or an expression of the form context(C) for C ∈ Σk. We define an
intrinsic priority for Φ as follows,

p(Φ) = ℓ(Φ) + h(Φ).

For C ∈ Σk, we have that p(context(C)) is the weight of a lightest derivation of goalk that
uses C, while p(C) is a lower bound on this weight.

The results from Sections 4 and 5 cannot be used directly to show the correctness of
HA*LD. This is because the rules in Figure 7 generate heuristic values at the same time
they generate derivations that depend on those heuristic values. Intuitively we must show
that during the execution of the prioritized rules H, each heuristic value is available at an
appropriate point in time. The next lemma shows that the rules in H satisfy a monotonicity
property with respect to the intrinsic priority of generalized statements Φ. Theorem 5 proves
the correctness of the hierarchical algorithm.

Lemma 4 (Monotonicity). For each rule Φ1, . . . ,Φm → Ψ in the hierarchical algorithm, if
the weight of each antecedent Φi is ℓ(Φi) and the weight of the conclusion is α then

(a) the priority of the rule is α + h(Ψ).

(b) α + h(Ψ) ≥ p(Φi).

Proof. For the rules START1 and START2 the result follows from the fact that the rules
have no antecedents and h(⊥) = h(context(⊥)) = 0.

Consider a rule labeled BASE with w = ℓ(goalk). To see (a) note that α is always zero
and the priority of the rule is w = h(context(goalk)). For (b) we note that p(goalk) =
ℓ(goalk) which equals the priority of the rule.

Now consider a rule labeled UP with wc = ℓ(context(abs(C))) and wi = ℓ(Ai) for all i.
For part (a) note how the priority of the rule is α+wc and h(C) = wc. For part (b) consider
the first antecedent of the rule. We have h(context(abs(C))) = ℓ(abs(C)) ≤ ℓ(C) ≤ α, and
p(context(abs(C))) = wc + h(context(abs(C))) ≤ α + wc. Now consider an antecedent
Ai. If abs(Ai) = ⊥ then p(Ai) = wi ≤ α + wc. If abs(Ai) 6= ⊥ then we can show that
h(Ai) = ℓ(context(abs(Ai))) ≤ wc +α−wi. This implies that p(Ai) = wi +h(Ai) ≤ α+wc.

Finally consider a rule labeled DOWN with wc = ℓ(context(C)) and wj = ℓ(Aj) for all
j. For part (a) note that the priority of the rule is α+wi and h(context(Ai)) = wi. For part
(b) consider the first antecedent of the rule. We have h(context(C)) = ℓ(C) ≤ v +

∑

j wj

and we see that p(context(C)) = wc + h(C) ≤ α + wi. Now consider an antecedent Aj . If
abs(Aj) = ⊥ then h(Aj) = 0 and p(Aj) = wj ≤ α + wi. If abs(Aj) 6= ⊥ we can show that
h(Aj) ≤ α + wi − wj . Hence p(Aj) = wj + h(Aj) ≤ α + wi.
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Theorem 5. The execution of H maintains the following invariants.

1. If (Φ = w) ∈ S then w = ℓ(Φ).

2. If (Φ = w) ∈ Q then it has priority w + h(Φ).

3. If p(Φ) < p(Q) then (Φ = ℓ(Φ)) ∈ S

Here p(Q) denotes the smallest priority in Q.

Proof. In the initial state of the algorithm S is empty and Q contains only (⊥ = 0) and
(context(⊥) = 0) at priority 0. For the initial state invariant 1 is true since S is empty;
invariant 2 follows from the definition of h(⊥) and h(context(⊥)); and invariant 3 follows
from the fact that p(Q) = 0 and p(Φ) ≥ 0 for all Φ. Let S and Q denote the state of the
algorithm immediately prior to an iteration of the while loop in Figure 5 and suppose the
invariants are true. Let S ′ and Q′ denote the state of the algorithm after the iteration.

We will first prove invariant 1 for S ′. Let (Φ = w) be the element removed from Q in
this iteration. By the soundness of the rules we have w ≥ ℓ(Φ). If w = ℓ(Φ) then clearly
invariant 1 holds for S ′. If w > ℓ(Φ) invariant 2 implies that p(Q) = w+h(Φ) > ℓ(Φ)+h(Φ)
and by invariant 3 we know that S contains (Φ = ℓ(Φ)). In this case S ′ = S.

Invariant 2 for Q′ follows from invariant 2 for Q, invariant 1 for S ′, and part (a) of the
monotonicity lemma.

Finally, we consider invariant 3 for S ′ and Q′. The proof is by reverse induction on the
abstraction level of Φ. We say that Φ has level k if Φ ∈ Σk or Φ is of the form context(C)
with C ∈ Σk. In the reverse induction, the base case considers Φ at level m. Initially the
algorithm inserts (⊥ = 0) and (context(⊥) = 0) in the queue with priority 0. If p(Q′) > 0
then S ′ must contain (⊥ = 0) and (context(⊥) = 0). Hence invariant 3 holds for S ′ and Q′

with Φ at level m.

Now we assume that invariant 3 holds for S ′ and Q′ with Φ at levels greater than k
and consider level k. We first consider statements C ∈ Σk. Since the rules Rk are additive,
every statement C derivable with Rk has a lightest derivation (a derivation with weight
ℓ(C)). This follows from the correctness of Knuth’s algorithm. Moreover, for additive
rules, subtrees of lightest derivations are also lightest derivations. We show by structural
induction that for any lightest derivation with conclusion C such that p(C) < p(Q′) we
have (C = ℓ(C)) ∈ S ′. Consider a lightest derivation in Rk with conclusion C such that
p(C) < p(Q′). The final rule in this derivation A1, . . . , An →v C corresponds to an UP rule
where we add an antecedent for context(abs(C)). By part (b) of the monotonicity lemma
all the antecedents of this UP rule have intrinsic priority less than p(Q′). By the induction
hypothesis on lightest derivations we have (Ai = ℓ(Ai)) ∈ S

′. Since invariant 3 holds for
statements at levels greater than k we have (context(abs(C)) = ℓ(context(abs(C)))) ∈ S ′.
This implies that at some point the UP rule was used to derive (C = ℓ(C)) at priority p(C).
But p(C) < p(Q′) and hence this item must have been removed from the queue. Therefore
S ′ must contain (C = w) for some w and, by invariant 1, w = ℓ(C).

Now we consider Φ of the form context(C) with C ∈ Σk. As before we see that c(Rk) is
additive and thus every statement derivable with c(Rk) has a lightest derivation and subtrees
of lightest derivations are lightest derivations themselves. We prove by structural induction
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that for any lightest derivation T with conclusion context(C) such that p(context(C)) <
p(Q′) we have (context(C) = ℓ(context(C))) ∈ S ′. Suppose the last rule of T is of the form,

context(C), A1, . . . , Ai−1, Ai+1, . . . , An →v context(Ai).

This rule corresponds to a DOWN rule where we add an antecedent for Ai. By part (b) of
the monotonicity lemma all the antecedents of this DOWN rule have intrinsic priority less
than p(Q′). By invariant 3 for statements in Σk and by the induction hypothesis on lightest
derivations using c(Rk), all antecedents of the DOWN rule have their lightest weight in
S ′. So at some point (context(Ai) = ℓ(context(Ai))) was derived at priority p(Ai). Now
p(Ai) < p(Q′) implies the item was removed from the queue and, by invariant 1, we have
(context(Ai) = ℓ(context(Ai))) ∈ S

′.
Now suppose the last (and only) rule in T is →0 context(goalk). This rule corre-

sponds to a BASE rule where we add goalk as an antecedent. Note that p(goalk) =
ℓ(goalk) = p(context(goalk)) and hence p(goalk) < p(Q′). By invariant 3 for statements
in Σk we have (goalk = ℓ(goalk)) in S ′ and at some point the BASE rule was used to queue
(context(goalk) = ℓ(context(goalk))) at priority p(context(goalk)). As in the previous cases
p(context(goalk)) < p(Q′) implies (context(goalk) = ℓ(context(goalk))) ∈ S

′.

The last theorem implies that generalized statements Φ are expanded in order of their
intrinsic priority. Let K be the number of statements C in the entire abstraction hierarchy
with p(C) ≤ p(goal) = ℓ(goal). For every statement C we have that p(C) ≤ p(context(C)).
We conclude that HA*LD expands at most 2K generalized statements before computing a
lightest derivation of goal .

6.1 Example

Now we consider the execution of HA*LD in a specific example. The example illustrates
how HA*LD interleaves the computation of structures at different levels of abstraction.
Consider the following abstraction hierarchy with 2 levels.

Σ0 = {X1, . . . , Xn, Y1, . . . , Yn, Z1, . . . , Zn, goal0}, Σ1 = {X, Y, Z, goal1},

R0 =























→i Xi,
→i Yi,
Xi, Yj →i∗j goal0,
Xi, Yi →5 Zi,
Zi →i goal0,























, R1 =























→1 X,
→1 Y,
X, Y →1 goal1,
X, Y →5 Z,
Z →1 goal1,























,

with abs(Xi) = X, abs(Yi) = Y , abs(Zi) = Z and abs(goal0) = goal1.

1. Initially S = ∅ and Q = {(⊥ = 0) and (context(⊥) = 0) at priority 0}.

2. When (⊥ = 0) comes off the queue it gets put in S but nothing else happens.

3. When (context(⊥) = 0) comes off the queue it gets put in S. Now statements in Σ1

have an abstract context in S. This causes UP rules that come from rules in R1 with
no antecedents to “fire”, putting (X = 1) and (Y = 1) in Q at priority 1.
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4. When (X = 1) and (Y = 1) come off the queue they get put in S, causing two UP
rules to fire, putting (goal1 = 3) at priority 3 and (Z = 7) at priority 7 in the queue.

5. We have,
S = {(⊥ = 0), (context(⊥) = 0), (X = 1), (Y = 1)}

Q = {(goal1 = 3) at priority 3, (Z = 7) at priority 7}

6. At this point (goal1 = 3) comes off the queue and goes into in S. A BASE rule fires
putting (context(goal1) = 0) in the queue at priority 3.

7. (context(goal1) = 0) comes off the queue. This is the base case for contexts in Σ1. Two
DOWN rules use (context(goal1) = 0), (X = 1) and (Y = 1) to put (context(X) = 2)
and (context(Y ) = 2) in Q at priority 3.

8. (context(X) = 2) comes off the queue and gets put in S. Now we have an abstract
context for each Xi ∈ Σ0, so UP rules to put (Xi = i) in Q at priority i + 2.

9. Now (context(Y ) = 2) comes off the queue and goes into S. As in the previous step
UP rules put (Yi = i) in Q at priority i + 2.

10. We have,

S = {(⊥ = 0), (context(⊥) = 0), (X = 1), (Y = 1), (goal1 = 3),

(context(goal1) = 0), (context(X) = 2), (context(Y ) = 2)}

Q = {(Xi = i) and (Yi = i) at priority i + 2 for 1 ≤ i ≤ n, (Z = 7) at priority 7}

11. Next both (X1 = 1) and (Y1 = 1) will come off the queue and go into S. This causes
an UP rule to put (goal0 = 3) in the queue at priority 3.

12. (goal0 = 3) comes off the queue and goes into S. The algorithm can stop now since
we have a derivation of the most concrete goal.

Note how HA*LD terminates before fully computing abstract derivations and contexts.
In particular (Z = 7) is in Q but Z was never expanded. Moreover context(Z) is not even
in the queue. If we keep running the algorithm it would eventually derive context(Z), and
that would allow the Zi to be derived.

7. The Perception Pipeline

Figure 8 shows a hypothetical run of the hierarchical algorithm for a processing pipeline
of a vision system. In this system weighted statements about edges are used to derive
weighted statements about contours which provide input to later stages ultimately resulting
in statements about recognized objects.

It is well known that the subjective presence of edges at a particular image location can
depend on the context in which a given image patch appears. This can be interpreted in
the perception pipeline by stating that higher level processes — those later in the pipeline
— influence low-level interpretations. This kind of influence happens naturally in a lightest
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Figure 8: A vision system with several levels of processing. Forward arrows represent the
normal flow of information from one stage of processing to the next. Backward
arrows represent the computation of contexts. Downward arrows represent the
influence of contexts.

derivation problem. For example, the lightest derivation of a complete scene analysis might
require the presence of an edge that is not locally apparent. By implementing the whole
system as a lightest derivation problem we avoid the need to make hard decisions between
stages of the pipeline.

The influence of late pipeline stages in guiding earlier stages is pronounced if we use
HA*LD to compute lightest derivations. In this case the influence is apparent not only
in the structure of the optimal solution but also in the flow of information across different
stages of processing. In HA*LD a complete interpretation derived at one level of abstraction
guides all processing stages at a more concrete level. Structures derived at late stages of
the pipeline guide earlier stages through abstract context weights. This allows the early
processing stages to concentrate computational efforts in constructing structures that will
likely be part of the globally optimal solution.

While we have emphasized the use of admissible heuristics, we note that the A* archi-
tecture, including HA*LD, can also be used with inadmissible heuristic functions (of course
this would break our optimality guarantees). Inadmissible heuristics are important because
admissible heuristics tend to force the first few stages of a processing pipeline to generate
too many derivations. As derivations are composed their weights increase and this causes a
large number of derivations to be generated at the first few stages of processing before the
first derivation reaches the end of the pipeline. Inadmissible heuristics can produce behavior
similar to beam search — derivations generated in the first stage of the pipeline can flow
through the whole pipeline quickly. A natural way to construct inadmissible heuristics is to
simply “scale-up” an admissible heuristic such as the ones obtained from abstractions. It is
then possible to construct a hierarchical algorithm where inadmissible heuristics obtained
from one level of abstraction are used to guide search at the level below.

8. Other Hierarchical Methods

In this section we compare HA*LD to other hierarchical search methods.
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8.1 Coarse-to-Fine Dynamic Programming

HA*LD is related to the coarse-to-fine dynamic programming (CFDP) method described by
Raphael (2001). To understand the relationship consider the problem of finding the shortest
path from s to t in a trellis graph like the one shown in Figure 9(a). Here we have k columns
of n nodes and every node in one column is connected to a constant number of nodes in
the next column. Standard dynamic programming can be used to find the shortest path
in O(kn) time. Both CFDP and HA*LD can often find the shortest path much faster. On
the other hand the worst case behavior of these algorithms is quite different as we describe
below, with CFDP taking significantly more time than HA*LD.

The CFDP algorithm works by coarsening the graph, grouping nodes in each column
into a small number of supernodes as illustrated in Figure 9(b). The weight of an edge
between two supernodes A and B is the minimum weight between nodes a ∈ A and b ∈ B.
The algorithm starts by using dynamic programming to find the shortest path P from s
to t in the coarse graph, this is shown in bold in Figure 9(b). The supernodes along P
are partitioned to define a finer graph as shown in Figure 9(c) and the procedure repeated.
Eventually the shortest path P will only go through supernodes of size one, corresponding
to a path in the original graph. At this point we know that P must be a shortest path from
s to t in the original graph. In the best case the optimal path in each iteration will be a
refinement of the optimal path from the previous iteration. This would result in O(log n)
shortest paths computations, each in fairly coarse graphs. On the other hand, in the worst
case CFDP will take Ω(n) iterations to refine the whole graph, and many of the iterations
will involve finding shortest paths in relatively fine graphs. In this case CFDP takes Ω(kn2)
time which is significantly worst than the dynamic programming approach.

Now suppose we use HA*LD to find the shortest path from s to t in a graph like the
one in Figure 9(a). We can build an abstraction hierarchy with O(log n) levels where each
supernode at level i contains 2i nodes from one column of the original graph. The coarse
graph in Figure 9(b) represents the highest level of this abstraction hierarchy. Note that
HA*LD will consider a small number, O(log n), of predefined graphs while CFDP can end
up considering a much larger number, Ω(n), of graphs. In the best case scenario HA*LD
will expand only the nodes that are in the shortest path from s to t at each level of the
hierarchy. In the worst case HA*LD will compute a lightest path and context for every
node in the hierarchy (here a context for a node v is a path from v to t). At the i-th
abstraction level we have a graph with O(kn/2i) nodes and edges. HA*LD will spend at
most O(kn log(kn)/2i) time computing paths and contexts at level i. Summing over levels
we get at most O(kn log(kn)) time total, which is not much worst than the O(kn) time
taken by the standard dynamic programming approach.

8.2 Hierarchical Heuristic Search

Our hierarchical method is also related to the HA* and HIDA* algorithms described in
(Holte et al., 1996) and (Holte et al., 2005). These methods are restricted to shortest paths
problems but they also use a hierarchy of abstractions. A heuristic function is defined for
each level of abstraction using shortest paths to the goal at the level above. The main
idea is to run A* or IDA* to compute a shortest path while computing heuristic values on-
demand. Let abs map a node to its abstraction and let g be the goal node in the concrete
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Figure 9: (a) Original dynamic programming graph. (b) Coarse graph with shortest path
shown in bold. (c) Refinement of the coarse graph along the shortest path.

graph. Whenever the heuristic value for a concrete node v is needed we call the algorithm
recursively to find the shortest path from abs(v) to abs(g). This recursive call uses heuristic
values defined from a further abstraction, computed through deeper recursive calls.

It is not clear how to generalize HA* and HIDA* to lightest derivation problems that
have rules with multiple antecedents. Another disadvantage is that these methods can
potentially “stall” in the case of directed graphs. For example, suppose that when using
HA* or HIDA* we expand a node with two successors x and y, where x is close to the goal
but y is very far. At this point we need a heuristic value for x and y, and we might have
to spend a long time computing a shortest path from abs(y) to abs(g). On the other hand,
HA*LD would not wait for this shortest path to be fully computed. Intuitively HA*LD
would compute shortest paths from abs(x) and abs(y) to abs(g) simultaneously. As soon
as the shortest path from abs(x) to abs(g) is found we can start exploring the path from x
to g, independent of how long it would take to compute a path from abs(y) to abs(g).
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Figure 10: A convex set specified by a hypothesis (r0, . . . , r7).

9. Convex object detection

Now we consider an application of HA*LD to the problem of detecting convex objects in
images. We pose the problem using a formulation similar to the one described by Raphael
(2001), where the optimal convex object around a point can be found by solving a shortest
path problem. We compare HA*LD to other search methods, including CFDP and A*
with pattern databases. The results indicate that HA*LD performs better than the other
methods over a wide range of inputs.

Let x be a reference point inside a convex object. We can represent the object boundary
using polar coordinates with respect to a coordinate system centered at x. In this case the
object is described by a periodic function r(θ) specifying the distance from x to the object
boundary as a function of the angle θ. Here we only specify r(θ) at a finite number of angles
(θ0, . . . , θN−1) and assume the boundary is a straight line segment between sample points.
We also assume the object is contained in a ball of radius R around x and that r(θ) is an
integer. Thus an object is parametrized by (r0, . . . , rN−1) where ri ∈ [0, R−1]. An example
with N = 8 angles is shown in Figure 10.

Not every hypothesis (r0, . . . , rN−1) specifies a convex object. The hypothesis describes
a convex set exactly when the object boundary turns left at each sample point (θi, ri) as
i increases. Let C(ri−1, ri, ri+1) be a Boolean function indicating when three sequential
values for r(θ) define a boundary that is locally convex at i. The hypothesis (r0, . . . , rN−1)
is convex when it is locally convex at each i.3

Throughout this section we assume that the reference point x is fixed in advance. Our
goal is to find an “optimal” convex object around a given reference point. In practice
reference locations can be found using a variety of methods such as a Hough transform.

3. This parametrization of convex objects is similar but not identical to the one in (Raphael, 2001).
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Let D(i, ri, ri+1) be an image data cost measuring the evidence for a boundary segment
from (θi, ri) to (θi+1, ri+1). We consider the problem of finding a convex object for which
the sum of the data costs along the whole boundary is minimal. That is, we look for a
convex hypothesis minimizing the following energy function,

E(r0, . . . , rN−1) =
N−1
∑

i=0

D(i, ri, ri+1).

The data costs can be precomputed and specified by a lookup table with O(NR2) entries.
In our experiments we use a data cost based on the integral of the image gradient along
each boundary segment. Another approach would be to use the data term in (Raphael,
2001) where the cost depends on the contrast between the inside and the outside of the
object measured within the pie-slice defined by θi and θi+1.

An optimal convex object can be found using standard dynamic programming tech-
niques. Let B(i, r0, r1, ri−1, ri) be the cost of an optimal partial convex object starting at
r0 and r1 and ending at ri−1 and ri. Here we keep track of the last two boundary points to
enforce the convexity constraint as we extend partial objects. We also have to keep track
of the first two boundary points to enforce that rN = r0 and the convexity constraint at r0.
We can compute B using the recursive formula,

B(1, r0, r1, r0, r1) = D(0, r0, r1),

B(i + 1, r0, r1, ri, ri+1) = min
ri−1

B(i, r0, r1, ri−1, ri) + D(i, ri, ri+1),

where the minimization is over choices for ri−1 such that C(ri−1, ri, ri+1) = true. The
cost of an optimal object is given by the minimum value of B(N, r0, r1, rN−1, r0) such that
C(rN−1, r0, r1) = true. An optimal object can be found by tracing-back as in typical dy-
namic programming algorithms. The main problem with this approach is that the dynamic
programming table has O(NR4) entries and it takes O(R) time to compute each entry. The
overall algorithm runs in O(NR5) time which is quite slow.

Now we show how optimal convex objects can be computed using a lightest derivation
problem. Let convex (i, r0, r1, ri−1, ri) denote a partial convex object starting at r0 and r1

and ending at ri−1 and ri. This corresponds to an entry in the dynamic programming table
described above. Define the set of statements,

Σ = {convex (i, a, b, c, d) | i ∈ [1, N ], a, b, c, d ∈ [0, R− 1]} ∪ {goal}.

An optimal convex object corresponds to a lightest derivations of goal using the rules in
Figure 11. The first set of rules specify the cost of a partial object from r0 to r1. The
second set of rules specify that an object ending at ri−1 and ri can be extended with a
choice for ri+1 such that the boundary is locally convex at ri. The last set of rules specify
that a complete convex object is a partial object from r0 to rN such that rN = r0 and the
boundary is locally convex at r0.

To construct an abstraction hierarchy we define L nested partitions of the radius space
[0, R − 1] into ranges of integers. In an abstract statement instead of specifying an integer
value for r(θ) we will specify the range in which r(θ) is contained. To simplify notation we
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(1) for r0, r1 ∈ [0, R− 1],

convex (1, r0, r1, r0, r1) = D(0, r0, r1)

(2) for r0, r1, ri−1, ri, ri+1 ∈ [0, R− 1] such that C(ri−1, ri, ri+1) = true,

convex (i, r0, r1, ri−1, ri) = w

convex (i + 1, r0, r1, ri, ri+1) = w + D(i, ri, ri+1)

(3) for r0, r1, rN−1 ∈ [0, R− 1] such that C(rN−1, r0, r1) = true,

convex (N, r0, r1, rN−1, r0) = w

goal = w

Figure 11: Rules for finding an optimal convex object.

assume that R is a power of two. The k-th partition P k contains R/2k ranges, each with
2k consecutive integers. The j-th range in P k is given by [j ∗ 2k, (j + 1) ∗ 2k − 1].

The statements in the abstraction hierarchy are,

Σk = {convex (i, a, b, c, d) | i ∈ [1, N ], a, b, c, d ∈ P k} ∪ {goalk},

for k ∈ [0, L − 1]. A range in P 0 contains a single integer so Σ0 = Σ. Let f map a range
in P k to the range in P k+1 containing it. For statements in level k < L − 1 we define the
abstraction function,

abs(convex (i, a, b, c, d)) = convex (i, f(a), f(b), f(c), f(d)),

abs(goalk) = goalk+1.

The abstract rules use bounds on the data costs for boundary segments between (θi, si)
and (θi+1, si+1) where si and si+1 are ranges in P k,

Dk(i, si, si+1) = min
ri ∈ si

ri+1 ∈ si+1

D(i, ri, ri+1).

Since each range in P k is the union of two ranges in P k−1 one entry in Dk can be computed
quickly (in constant time) once Dk−1 is computed. The bounds for all levels can be com-
puted in O(NR2) time total. We also need abstract versions of the convexity constraints.
For si−1, si, si+1 ∈ P k let Ck(si−1, si, si+1) = true if there are integers ri−1, ri and ri+1 in
si−1, si and si+1 respectively such that C(ri−1, ri, ri+1) = true. The value of Ck can be
defined in closed form and evaluated quickly using simple geometry.

The rules in the abstraction hierarchy are almost identical to the rules in Figure 11.
The rules in level k are obtained from the original rules by simply replacing each instance
of [0, R− 1] by P k, C by Ck and D by Dk.
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Standard DP 6718.6 seconds

CFDP 13.5 seconds

HA*LD 8.6 seconds

A* with pattern database in Σ2 14.3 seconds

A* with pattern database in Σ3 29.7 seconds

Table 1: Running time comparison for the example in Figure 12.

9.1 Experimental results

Figure 12 shows an example image with a set of reference locations that we selected manually
and the optimal convex object found around each reference point. There are 14 reference
locations and we used N = 30 and R = 60 to parametrize each object. Table 1 compares the
running time of different optimization algorithms we implemented for this problem. Each
line shows the time it took to solve all 14 problems contained in the example image using
a particular search algorithm. The standard DP algorithm uses the dynamic programming
solution outlined above. The CFDP method is based on the algorithm in (Raphael, 2001)
but modified for our representation of convex objects. Our hierarchical A* algorithm uses
the abstraction hierarchy described here. For A* with pattern databases we used dynamic
programming to compute a pattern database at a particular level of abstraction, and then
used the database to provide heuristic values for standard A* search. Note that for the
problem described here the pattern database depends on the input. The running times
listed include the time it took to compute the pattern database in each case.

We see that CFDP, HA*LD and A* with pattern databases are much more efficient than
the standard dynamic programming algorithm that does not use abstractions. HA*LD is
slightly faster then the other methods in this example. Note that while the running time
varies from algorithm to algorithm the output of every method is the same as they all find
globally optimum objects.

For a quantitative evaluation of the different search algorithms we created a large set of
problems of varying difficulty and size as follows. For a given value of R we generated square
images of width and height 2 ∗R + 1. Each image has a circle with radius less than R near
the center and the pixels in an image are corrupted by independent Gaussian noise. The
difficulty of a problem is controlled by the standard deviation, σ, of the noise. Figure 13
shows some example images and optimal convex object found around their centers.

The graph in Figure 14 shows the running time (in seconds) of the different search
algorithms as a function of the noise level when the problem size is fixed at R = 100.
Each sample point indicates the average running time over 200 random inputs. The graph
shows running times up to a point after which the circles can not be reliably detected. We
compared HA*LD with CFDP and A* search using pattern databases (PD2 and PD3).
Here PD2 and PD3 refer to A* with a pattern database defined in Σ2 and Σ3 respectively.
Since the pattern database needs to be recomputed for each input there is a trade-off in the
amount of time spent computing the database and the accuracy of the heuristic it provides.
We see that for easy problems it is better to use a smaller database (defined at a higher
level of abstraction) while for harder problems it is worth spending time computing a bigger
database. HA*LD outperforms the other methods in every situation captured here.
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(a)

(b)

Figure 12: (a) Reference locations. (b) Optimal convex objects.
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Figure 13: Random images with circles and the optimal convex object around the center of
each one (with N = 20 and R = 100). The noise level in the images is σ = 50.

Figure 15 shows the running time of the different methods as a function of the problem
size R, on problems with a fixed noise level of σ = 100. As before each sample point
indicates the average running time taken over 200 random inputs. We see that the running
time of the pattern database approach grows quickly as the problem size increases. This is
because computing the database at any fixed level of abstraction takes O(NR5) time. On
the other hand the running time of both CFDP and HA*LD grows much slower. While
CFDP performed essentially as well as HA*LD in this experiment, the graph in Figure 14
shows that HA*LD performs better as the difficulty of the problem increases.

10. Finding Salient Curves in Images

A classical problem in computer vision involves finding salient curves in images. Intuitively
the goal is to find long and smooth curves that go along paths with high image gradient.
The standard way to pose the problem is to define a saliency score and search for curves
optimizing that score. Most methods use a score defined by a simple combination of locally
defined terms. For example, the score could depend on the curvature and the image gradient
along a curve. This type of score can be optimized efficiently using dynamic programming
or shortest paths algorithms (Montanari, 1971; Shashua & Ullman, 1988; Basri & Alter,
1996; Williams & Jacobs, 1996).

Here we define a new compositional model for finding salient curves. An important
aspect of this model is that it can capture global shape constraints. In particular it can
be used to find curves that are almost straight, something that can’t be done using local
constraints alone. Local constraints can enforce small curvature values at each point along
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Figure 14: Running time of different search algorithms as a function of the noise level σ in
the input. Each sample point indicates the average running time taken over 200
random inputs. In each case N = 20 and R = 100. See text for discussion.

a curve, but this is not enough to prevent curves from turning or twisting around over long
distances. The problem of finding the most salient curve in an image using the compositional
model defined here can be solved with dynamic programming, but the approach is too
slow for practical use. Standard shortest paths methods are not applicable because of the
compositional nature of the model. Instead we use A*LD with a heuristic function derived
form an abstraction (a pattern database).

Let C1 be a curve with endpoints a and b and C2 be a curve with endpoints b and c.
The two curves can be composed to form a curve C from a to c. We define the weight of the
composition to be the sum of the weights of C1 and C2 plus a shape cost that depends on
the geometric arrangement of points (a, b, c). Figure 16 illustrates the idea and the shape
costs we use. Note that when C1 and C2 are long, the arrangement of their endpoints reflect
non-local geometric properties. In general we consider composing C1 and C2 if the angle
formed by ab and bc is at least π/2 and the lengths of C1 and C2 are approximately equal.
These constraints reduce the total number of compositions and play an important role in
the abstract problem defined below.

Besides the compositional rule we say that if a and b are nearby locations, then there is
a short curve with endpoints a and b. This forms a base case for creating longer curves. We
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Figure 15: Running time of different search algorithms as a function of the problem size R.
Each sample point indicates the average running time taken over 200 random
inputs. In each case N = 20 and σ = 100. See text for discussion.

t
ca

b

Figure 16: A curve with endpoints (a, c) is formed by composing curves with endpoints
(a, b) and (b, c). We assume that t ≥ π/2. The cost of the composition is
proportional to sin2(t). This cost is scale invariant and encourages curves to be
relatively straight.

assume that these short curves are straight, and their weight depends only on the image
data along the line segment from a to b. We use a data term, seg(a, b), that is zero if the
image gradient along pixels in ab is perpendicular to ab, and higher otherwise.

Figure 17 gives a formal definition of the two rules in our model. The constants k1 and
k2 specify the minimum and maximum length of the base case curves, while L is a constant
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(1) for pixels a, b, c where the angle between ab and bc is at least π/2 and for 0 ≤ i ≤ L,

curve(a, b, i) = w1

curve(b, c, i) = w2

curve(a, c, i + 1) = w1 + w2 + shape(a, b, c)

(2) for pixels a, b with k1 ≤ ||a− b|| ≤ k2,

curve(a, b, 0) = seg(a, b)

Figure 17: Rules for finding “almost straight” curves between a pair of endpoints. Here L,
k1 and k2 are constants, while shape(a, b, c) is a function measuring the cost of
a composition.

controlling the maximum depth of derivations. A derivation of curve(a, b, i) encodes a curve
from a to b. The value i can be seen as an approximate measure of arclength. A derivation
of curve(a, b, i) is a full binary tree of depth i that encodes a curve with length between
2ik1 and 2ik2. We let k2 = 2k1 to allow for curves of any length.

The rules in Figure 17 do not define a good measure of saliency by themselves because
they always prefer short curves over long ones. We can define the saliency of a curve in
terms of its weight minus its arclength. This way salient curves will be light and long. Let
λ be a positive constant. We consider finding the lightest derivation of goal using,

curve(a, b, i) = w

goal = w − λ2i

For an n×n image there are Ω(n4) statements of the form curve(a, c, i). Moreover, if a
and c are far apart there are Ω(n) choices for a “midpoint” b defining the two curves that
are composed in a lightest derivation of curve(a, c, i). This makes a dynamic programming
solution to the lightest derivation problem impractical. We have tried using KLD but even
for small images the algorithm runs out of memory after a few minutes. Below we describe
an abstraction we have used to define a heuristic function for A*LD.

Consider a hierarchical set of partitions of an image into boxes. The i-th partition is
defined by tiling the image into boxes of 2i× 2i pixels. The partitions form a pyramid with
boxes of different sizes at each level. Each box at level i is the union of 4 boxes at the level
below it, and the boxes at level 0 are the pixels themselves. Let fi(a) be the box containing
a in the i-th level of the pyramid. Now define

abs(curve(a, b, i)) = curve(fi(a), fi(b), i).
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Figure 18: The abstraction maps each curve statement to a statement about curves between

boxes. If i > j then curve(a, b, i) gets coarsened more than curve(c, d, j). Since
light curves are almost straight, i > j usually implies that ||a− b|| > ||c− d||.

Figure 18 illustrates how this map selects a pyramid level for an abstract statement. In-
tuitively abs defines an adaptive coarsening criteria. If a and b are far from each other, a
curve from a to b must be long, which in turn implies that we map a and b to boxes in a
coarse partition of the image. This creates an abstract problem that has a small number of
statements without losing too much information.

To define the abstract problem we also need to define a set of abstract rules. Recall
that for every concrete rule r we need a corresponding abstract rule r′ where the weight
of r′ is at most the weight of r. There are a small number of rules with no antecedents in
Figure 17. For each concrete rule →seg(a,b) curve(a, b, 0) we define a corresponding abstract
rule→seg(a,b) abs(curve(a, b, 0)). The compositional rules in Figure 17 lead to abstract rules
for composing curves between boxes,

curve(A, B, i), curve(B, C, i)→v curve(A′, C ′, i + 1),

where A, B and C are boxes at the i-th pyramid level while A′ and C ′ are the boxes at
level i + 1 containing A and C respectively. The weight v should be at most shape(a, b, c)
where a, b and c are arbitrary pixels in A, B and C respectively. We compute a value for
v by bounding the orientations of the line segments ab and bc between boxes.
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The abstract problem defined here is relatively small even in large images. This means
that we can compute lightest contexts for every abstract statement using KLD. We use the
abstract contexts to define a heuristic function for running A*LD in the original problem.
Figure 19 illustrates some of the results we obtained using this method. It took about one
minute to find the most salient curve in each of these images. It seems like the abstraction
is able to capture that most short curves can not be extended to a salient curve. Figure 19
lists the dimensions of each image and the running time in each case.

Note that our algorithm does not rely on an initial binary edge detection stage. Instead
the base case rules allow for salient curves to go over any pixel, even if there is no local
evidence for a boundary at a particular location. Figure 20 shows an example where this
happens. In this case there is a small part of the horse back that blends with the background
if we consider local properties alone.

The curve finding algorithm described in this section would be very difficult to formulate
without A*LD and the general notion of heuristics derived from abstractions for lightest
derivation problems. However, using the framework introduced in this paper it becomes
relatively easy to specify the algorithm.

In the future we plan to “compose” the rules for computing salient curves with rules for
computing more complex structures. The basic idea of using a pyramid of boxes for defining
an abstract problem should be applicable to a variety of problems in computer vision.

11. Conclusion

Although we have presented some preliminary results in the last two sections, we view the
main contribution of this paper as providing a general architecture for perceptual inference.
Dijkstra’s shortest paths algorithm and A* search are both fundamental algorithms with
many applications. Knuth noted the generalization of Dijkstra’s algorithm to more general
problems defined by a set of recursive functions. In this paper we have given similar gen-
eralizations for A* search and heuristics derived from abstractions. We have also described
a new method for solving lightest derivation problems using a hierarchy of abstractions.
Finally, we have outlined an approach for using these generalizations in the construction of
processing pipelines for perceptual inference.
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146× 137 pixels. Running time: 50 seconds (38 + 12).

122× 179 pixels. Running time: 65 seconds (43 + 22).

226× 150 pixels. Running time: 73 seconds (61 + 12).

Figure 19: The most salient curve in different images. The running time is the sum of
the time spent computing the pattern database and the time spent solving the
concrete problem.
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